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Abstract
Lithium niobate is a material with many important technological applications, and some of
these applications are enhanced by doping the material with trivalent transition metal ions. This
paper presents a computational analysis of the doping of lithium niobate by Sc, Cr, Fe and In.
It is found that the preferred doping mechanism for Sc, Cr and Fe is a self-compensation
mechanism (simultaneous substitution of the dopant at the Li and Nb sites), except for In, which
shows a slight preference for substitution at the Nb5+ site with Nb–Li antisite compensation at
0 K. Cr and Fe doping have been studied experimentally, and the experimental findings support
the predictions of the calculations regarding optimal doping sites in the material.

1. Introduction

Lithium niobate, LiNbO3, is a material of great technological
importance, with many applications in devices that exploit
its properties, ranging from elastic to photorefractive [1–4].
Computer modelling provides a useful means of determining
the properties of the material, including its defect chemistry,
and the effect of doping on the structure. Previous papers
have presented a new potential model for the material [5], and
reported the doping of the structure by rare earth ions [6, 7].

In this paper, doping by Sc, Cr, Fe and In has been
considered. These elements were chosen because they are
of particular technological interest as dopants in LiNbO3.
Sc doping has been found to increase the photo-damage
threshold [8]. It was also found that for Sc doping levels of 0.4
mole% or higher, no photorefractive damage was observed [9].
In addition, co-doping by In and Sc also increases the
photo-damage threshold [10]. For LiNbO3:Cr:Cu crystals, a
non-volatile holographic recording can be obtained, and an
appropriate Cr doping level helps improve the holographic
recording properties [11]. In a very recent paper, Cr has
been suggested as a versatile probe for mapping ferroelectric
domain inversion in LiNbO3 [12]. The authors of this paper
also noted that Cr is found in two different site symmetries in
LiNbO3, which will be discussed later in the light of results
presented. The effect of neutron irradiation on photorefractive
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gratings in LiNbO3:Fe single crystals has been studied, and
it was found that excited electrons erase previously recorded
holographic gratings [13]. In a recently published paper [14],
x-ray absorption near edge structure spectroscopy has been
used to study both the charge and location of Fe ions in
LiNbO3. The paper finds that Fe has the 3+ charge state, and
that the Fe3+ ions are located at the Li+ sites. They also found
that for Fe doping levels of 4.0 wt% or higher, a trivalent iron
oxide co-phase was formed.

In the present paper, a computational study of doping
LiNbO3 by Sc, Cr, Fe and In is reported. Solution energies
are calculated for doping with these ions, which enable
predictions to be made of the preferred dopant sites and charge
compensation mechanisms in the material.

2. Methodology

The application of computer modelling techniques to study the
defect chemistry of solid state materials is widely established;
recent applications to technologically important materials
have included topaz, used in dosimeter devices [15], and
LiCaAlF6/LiSrAlF6 [16] and BaY2F8 [17] used as solid state
laser materials. Use is made of the Mott–Littleton method [18]
in which point defects are considered to be at the centre of
a region in which all interactions are treated explicitly, while
approximate methods are employed for regions of the lattice
more distant from the defect. The calculations were performed
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Table 1. Interionic potentials obtained from a fit to trivalent oxide
structures.

Interaction Aij (eV) ρi j (Å) Cij (eV Å
6
)

Cr–O 1267.38 0.3197 3.65
Sc–O 1574.95 0.3231 4.67
Fe–O 1438.60 0.3148 3.58
In–O 1459.05 0.3347 5.24

Table 2. Basic defect formation energies and lattice energies.

(a) Basic defect formation energies (per defect) (eV)
0 K 293 K

V′
Li 9.81 9.71

V′′′′
Nb 127.56 127.45

V··
O 18.98 18.91

Li·i −7.08 −7.12

Nb·····
i −104.12 −104.25

O′′
i −9.47 −9.64

Nb····
Li −98.37 −98.49

(b) Lattice energies (eV)

LiNbO3 −174.57 −174.66
Li2O −33.16 −32.92
Nb2O5 −314.37 −313.99
Sc2O3 −144.70 −144.77
Cr2O3 −152.44 −152.52
Fe2O3 −151.55 −151.63
In2O3 −140.65 −140.76

using the GULP code [19]. The potentials for the dopant ion–
oxygen interactions were obtained by fitting to the parent oxide
structures, and are given in table 1.

3. Results and discussion

The trivalent dopant ions can potentially be incorporated at
either the Li+ or the Nb5+ site, and the following possible
defect reactions are considered in this paper (Kröger–Vink
notation has been employed):

(i) M2O3 + 6LiLi → 2M··
Li + 4V′

Li + 3Li2O

(ii) M2O3 + LiLi + NbNb → M··
Li + M′′

Nb + LiNbO3

(iii) M2O3 + LiLi + 2NbNb → 2M′′
Nb + Nb····

Li + LiNbO3

(iv) M2O3 + 6LiLi + 2NbNb → 2M′′
Nb + 4V′

Li

+ 2Nb····
Li + 3Li2O.

The first reaction involves substitution at the Li+ site,
with charge compensation respectively by Li+ vacancies; the
second involves self-compensation (substitution at both sites),
and the third and fourth reactions involve substitution at the
Nb5+ site with compensation by, respectively, Nb–Li antisite
defects, and a combination of these and Li+ vacancies.

The energies corresponding to these reactions (Esol,
solution energies) are determined as follows:

(i) Esol = −Elatt(M2O3) + E(2M·
Li + 4V′

Li) + 3E ·
latt(Li2O)

(ii) Esol = −Elatt(M2O3) + E(M·
Li + M′′

Nb) + Elatt(LiNbO3)

(iii) Esol = −Elatt(M2O3) + E(2M′′
Nb + Nb····

Li )

+ Elatt(LiNbO3)

(iv) Esol = −Elatt(M2O3) + E(2M′′
Nb + 4V′

Li + 2Nb····
Li )

+ Elatt(Li2O).

Basic defect formation energies and lattice energies
required to calculate the solution energies are given in table 2.
In each of the above equations, the second term represents
the formation energy of the dopant ion plus any charge
compensating defect. These formation energies are tabulated,
for each of the four dopants, in table 3. Bound defect formation
energies have been calculated by including any defect binding
present when the defect is formed. Solution energies are given
in table 4. As with the defect formation energies, the bound
solution energies include defect binding energies.

It can be seen from the bound solution energies presented
in table 4(b) that the preferred solution mechanism for
three of the four dopants involves solution at both Li+
and Nb5+ sites for both temperatures, while In3+ shows a
slight preference for substitution at the Nb5+ site with Nb–Li
antisite compensation at 0 K. This information is important in
technological applications of the doped material, in that the
material properties will be directly affected by both the dopant
site and the form of charge compensation, if any. It would also
be interesting to see if the predicted results for In3+ doping
could be confirmed in a future experimental study.

Table 3. Defect formation energies.

Defect 2M(Li) + 4V(Li) M(Li) + M(Nb) 2M(Nb) + Nb(Li) 2M(Nb) + 4V(Li) + 2Nb(Li)

T (K) 0 293 0 293 0 293 0 293

(a) Unbound defects

Sc −34.26 −34.88 33.38 33.16 41.89 41.55 −17.24 −18.10
Cr −42.70 −43.22 25.61 25.44 34.79 34.45 −24.34 −25.20
Fe −41.80 −42.36 26.39 26.21 35.45 35.13 −23.68 −24.52
In −29.74 −30.38 37.66 37.41 45.93 45.55 −13.20 −14.10

(b) Bound defects

Sc −36.02 −38.23 30.65 31.88 31.38 34.38 −30.61 −30.36
Cr −44.81 −47.11 22.58 24.14 24.08 26.51 −36.62 −34.44
Fe −43.85 −46.18 23.34 24.91 24.83 26.32 −40.28 −36.32
In −31.47 −33.45 35.35 36.10 35.34 37.45 −26.18 −26.45
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Table 4. Solution energies (per dopant ion).

Defect 2M(Li) + 4V(Li) M(Li) + M(Nb) 2M(Nb) + Nb(Li) 2M(Nb) + 4V(Li) + 2Nb(Li)

T (K) 0 293 0 293 0 293 0 293

(a) Unbound defects

Sc 5.48 5.57 1.76 1.64 6.01 5.83 13.99 13.96
Cr 5.13 5.27 1.74 1.65 6.33 6.16 14.31 14.28
Fe 5.14 5.26 1.69 1.59 6.22 6.06 14.20 14.18
In 5.72 5.81 1.87 1.76 6.01 5.83 13.99 13.95

(b) Bound defects

Sc 4.60 3.89 0.39 1.00 0.75 2.25 7.31 7.83
Cr 4.08 3.33 0.22 1.00 0.97 2.19 8.17 9.66
Fe 4.11 3.34 0.16 0.94 0.91 1.65 5.90 8.28
In 4.85 4.27 0.72 1.10 0.71 1.77 7.50 7.77

In the case of Cr doping, the results in table 4(b) are
consistent with the findings of [12], where the Cr is seen to
occupy two sites with different site symmetries (the lowest
solution energy corresponds to simultaneous occupation of the
Li and Nb sites). Similarly, Fe is also predicted to substitute
at both Li and Nb sites, and this observation can explain the
results of [14], where a co-precipitation of an iron oxide phase
was observed for higher Fe dopant concentrations. This can
only happen if both Li and Nb sites are occupied in the same
region of the crystal.

4. Conclusions

The paper has presented a survey of doping of LiNbO3 by
transition metal ions, and predictions have been made of the
energetically optimum sites for location of these dopant ions.
In addition, the predictions of the present study are in line with
those of recent experimental work in this field.
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